BIT PATTERN	DENARY PATTERN
00000000	0
00000001	1
11111111	1 minu
00000011	
11111101	-3
00011111	31
11100001	-31

COMPUTATIONAL LOGIC

0101010101 10101010

	•			
A	В	CARRY-IN	SUM	CARRY-OUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	
1	0	1		1/100
1	1		RANG	1
1	1	1		1

Binary Data

- How does a Turing machine work?
- What is the problem with Moore's Law and transistors?
- Investigate quantum computing. How do bits represent information in a quantum computer?
- What is a qubit and and what does superposition mean?

Computer Mathematics

Print(round(12+(6/9)*3-2,5))

What is the answer to this problem?

- Explain how you arrived at your answer
- Mr Jones is writing a CS book. The text file has a maximum of 15,000 lines. Each page can fit 55 lines. Show how the MOD function can be used to determine whether the text file is long enough.
- Explain how two's complement works.
- Calculate this two's complement addition 10001111 + 11110000 Does the result create an issue in an 8 bit system? Explain your answer
- What does the expression 23 DIV 6 evaluate to?
- Discuss integer division with reference to MOD and DIV

Logic Gates & Diagrams

Create the Boolean expression for this logic circuit

What does the circuit represent?

Explain how the circuit represents the flow of binary data in a computer

Explain the relationship between this logic circuit and the one to the left

The top logic diagram has the expression $\mathbf{A}\mathbf{A} \bigoplus \mathbf{B}$

The bottom logic diagram has the

expression $A \land B \lor A \land B$

- Which outputs do the expressions refer to?
- What input values would produce an output of 1 for the expressions?
- Discuss the importance of logic gates, truth tables and Boolean expressions in computer science

Truth Tables

What does the circuit represent?

Discuss how the circuit might be used in a calculator

Create the truth table for this logic circuit and label the gates