

OPERATOR	DESCIPTION	EXAMPLE
+	ADDS 2 VALUES	2 + 34 = 36
-	SUBTRACTS ONE VALUE FROM ANOTHER	34 - 2 = 32
•	MULTIPLIES BOTH VALUES	2 * 34 = 68
/	DIVIDES ONE NUMBER BY ANOTHER	34 / 2 = 17
MOD	REMAINDER MODULUS — FINDS THE REMAINDER OF A DIVISION	39 MOD 2 = 1
DIV	INTEGER DIVISION — FINDS THE INTEGER PART OF A DIVISION	39 DIV 2 = 19
^	EXPONENTIAL — CALCULATES THE RESULT OF RAISING TO A POWER	2 ^ 4 =

COMPUTATIONAL LOGIC

A ^ B Q 7(200)	NOT 7
B (A^B)	
2 A ¬ ¬ ¬ ¬ (A^B)	ans &

LOGICAL OPERATORS				
OPERATOR	OPERATOR EXAMPLE			
AND ^	X = 15 Y = 9 X < 16 ^ Y > 8 RETURN TRUE			
0R ^	x = 15 y - 9 x = = 8 v y = = 5 return false			
NOT 7	X = 16 Y = 9 (X = = Y) RETURN TRUE			

GATE	A	В	Q
Thus	eg e	$\sum_{i=0}^{1} a_i$	0
2	1		20

1 ON OFF

ELECTRONIC

CHARGE

ELECTRONIC

SYSTEM

BINARY

DIGIT

(BIT)

1 bit
1 nibble (4 bits)
1 nibble (8 bits)
1 byte (8 bits)
1 byte (8 bits)
1 byte (1024 kilobytes)
KB 1 kilobyte (1024 megabytes)
MB 1 megabyte (1024 megabytes)
GB 1 gigabyte (1024 gigabytes)
TB 1 terabyte (1024 terabytes)
PB 1 petabyte (1024 terabytes)

Why Binary?

- Know that an 'instruction' is a set of binary digits from 4 bits to several bytes in length
- Be able to discuss how a processor characterization eg 32 bit, 64 bit relates to the size of the instructions and memory
- Know that a binary file will also also contain metadata. Explain why meta data is important.
- Be able to discuss the link between logic gates and binary making it clear that the bit value output from a logic gate forms part of an instruction set

Know how to work with variable values:

num1 = 39, num2 = 71, total = num1 ? num2

grossValue = 101, netValue = 71, deductions = grossValue ? netValue

radius = 10, pi = 3.142, circle = pi ?(r^r)

triangle = b * h ? 2, print(triangle)

Check if a number is even with MOD: IF numIn MOD 2 != 0 print("Odd number")

Check if a number is an integer with DIV: IF numIn DIV 1 == numIn print("Integer")

Calculate the value with base and exponent:

input base (5), input exponent (2), product = base ^ exponent (25)

Computer Mathematics

Mathematical Terms and Symbols

DIV: // (double division sign)

** (double asterisk)

 $eg(A \land B) \land C$

Understand equivalence:

 $AND = \bigwedge (A \bigwedge B)$, $OR = \bigvee$, + $(A \bigvee B = A+B)$,

NOT = \neg , \sim (\neg A, A, \sim A)

Be able to calculate the number of rows required in a truth table based on the inputs and/or logic gates: rows = 2^n where n = inputs (3 inputs = 2^2 2*2)

EG ¬ ((A ∧ B) ∧ C)

Inputs = 3 (A, B, C)

	0	0	0	0	0
-	1	0	0	0	0
	0	1	0	0	0
	0	0	0	1	0
	1	1	1	0	0
	0	1	0	1	0
	1	0	0	1	0
	1	1	1	1	1

Logic Diagrams & Truth Tables