The sum of the relative atomic masses of the atoms in the numbers shown in the formula

The sum of the M_{r} of the reactants in the quantities shown equals the sum of the M_{r} of the products in the quantities shown.

Mass changes when a reactant or product is a gas

Represent chemical reactions and have the same number of atoms of each element on both sides of the equation

One mole of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}(1+1+16)$
One mole of $\mathrm{Mg}=24 \mathrm{~g}$
6.02×10^{23} per mole

One mole of $\mathrm{H}_{2} \mathrm{O}$ will contain 6.02×10^{23} molecules One mole of NaCl will contain $6.02 \times 10^{23} \mathrm{Na}^{+}$ions

How many moles of sulfuric acid molecules are there in 4.7 g of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$?

Give your answer to 1 significant figure.
$4.7=0.05 \mathrm{~mol}$
$98 \stackrel{4.7}{\longleftarrow}\left(\mathrm{M}_{\mathrm{r}}\right.$ of $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

Chemical equations show the number of moles
reacting and the number of moles made

Limits the amount of product that is made

Less moles of product are made.

PiXL

Chemical amounts are measured in moles (mol)		Mass of one mole of a substance in grams = relative formula mass		One mole of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}(1+1+16)$ One mole of $\mathbf{M g}=\mathbf{2 4 g}$
\downarrow				
	One mole of any substance will contain the same number of particles, atoms, molecules or ions.		$6.02 \times 10^{23} \text { per mole }$ One mole of $\mathrm{H}_{2} \mathrm{O}$ will contain 6.02×10^{23} molecules One mole of NaCl will contain $6.02 \times 10^{23} \mathrm{Na}^{+}$ions	
\downarrow				
$\text { Number of moles }=\frac{\text { mass }(\mathrm{g})}{A_{r}} \text { or mass } \frac{(\mathrm{g})}{M_{r}}$			How many moles of sulfuric acid molecules are there in 4.7 g of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$? Give your answer to 1 significant figure. $\frac{4.7}{98} \stackrel{=0.05 \mathrm{~mol}}{\longleftarrow}\left(\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4}\right)$	

If you have a 60 g of Mg , what mass of
HCl do you need to convert it to MgCl_{2} ?
$\mathrm{A}_{\mathrm{r}}: \mathrm{Mg}=24$ so mass of 1 mole of $\mathrm{Mg}=$
24 g
$\mathrm{M}_{\mathrm{r}}: \mathrm{HCl}(1+35.5)$ so mass of 1 mole of
$\mathrm{HCl}=36.5 \mathrm{~g}$
So 60 g of Mg is $60 / 24=2.5$ moles
Balanced symbol equation tells us that
for every one mole of Mg , you need
two moles of HCl to react with it.
So you need $2.5 \times 2=5$ moles of HCl
You will need $5 \times 36.5 \mathrm{~g}$ of $\mathrm{HCl}=182.5 \mathrm{~g}$

The sum of the relative atomic masses of the atoms in the numbers shown in the formula reactants in the quantities shown equals the sum of the M_{r} of the products in the quantities shown.

Mass changes when a reactant or product is a gas

	Represent chemical reactions and have the same number of atoms of each element on both sides of the equation	Subscript numbers show the number of atoms of the element to its left.
Normal script numbers show the number of		
molecules.		

ne mole of any substance will contain the same number of particles, atoms, molecules or ions.
6.02×10^{23} per mole
One mole of $\mathrm{H}_{2} \mathrm{O}$ will contain 6.02×10^{23} molecules One mole of NaCl will contain $6.02 \times 10^{23} \mathrm{Na}^{+}$ions

How many moles of sulfuric acid molecules are there in 4.7 g of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$?

Give your answer to 1 significant figure.

$4.7=0.05 \mathrm{~mol}$

$98 \longleftarrow\left(\mathrm{M}_{\mathrm{r}}\right.$ of $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

If you have a $\mathbf{6 0 g}$ of $\mathbf{M g}$, what mass of HCl do you need to convert it to MgCl_{2} ?
$A_{r}: M g=24$ so mass of 1 mole of $\mathbf{M g}=$ 24g
$\mathrm{M}_{\mathrm{r}}: \mathrm{HCl}(1+35.5)$ so mass of 1 mole of $\mathrm{HCl}=36.5 \mathrm{~g}$

So $\mathbf{6 0 g}$ of Mg is $\mathbf{6 0 / 2 4} \mathbf{= 2 . 5}$ moles
Balanced symbol equation tells us that for every one mole of Mg , you need two moles of HCl to react with it

So you need 2.5x2 = 5 moles of HCl
You will need $5 \times 36.5 \mathrm{~g}$ of $\mathrm{HCl}=182.5 \mathrm{~g}$
 reactants in the quantities shown equals the sum of the M_{r} of the products in the quantities shown.

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

One mole of magnesium reacts with two moles of hydrochloric acid to make one mole of magnesium chloride and one mole of hydrogen

If you have a 60 g of Mg , what mass of HCl do you need to convert it to MgCl_{2} ?
$A_{r}: M g=24$ so mass of 1 mole of $\mathrm{Mg}=$ 24g
$M_{r}: \mathrm{HCl}(1+35.5)$ so mass of 1 mole of $\mathrm{HCl}=36.5 \mathrm{~g}$

So 60 g of Mg is $\mathbf{6 0 / 2 4}=\quad$ moles
Balanced symbol equation tells us that for every one mole of Mg , you need two moles of HCl to react with it.

So you need
$=5$ moles of HCl
You will need
$=182.5 \mathrm{~g}$

