

Alkenes are used to make polymers by addition polymerisation.	Many small molecules join together to form polymers (very large molecules).
In addition polymers, the repeating unit has the same atoms as the monomer.	It can be displayed like this:

	Alkenes are hydrocarbons in the functional group $C=C$.	The functional group of an organic compound determined their reactions.	H $\mathbf{H}-\mathrm{C}$ \mathbf{H}

Methanol

PiXL

Ethanol

$\mathrm{H} H \mathrm{H} H$ ne same way as other smoky flam incomplete combustion

Alkenes also react with
hydrogen, water and the halogens. The $\mathrm{C}=\mathrm{C}$ bond allows for the addition of other atoms.

AQA GCSE Organic

 chemistry 2 (CHEMISTRY ONLY)
Synthetic and naturally occurring polymers

functional groups in a molecule. They react by condensation polymerisation to produce peptides.

Glycine

Reactions of alkenes

Reactions of alkenes and alcohols

For example: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Methanol, ethanol, propanol and butanol are the first four of the homologous series.

Alcohols and sodium:
bubbling, hydrogen gas given off and salt formed.

Alcohols and air:

 alcohols burn in air releasing carbon dioxide and water.Alcohols and water:
alcohols dissolve in water to form a neutral solution.

When sugar solutions are fermented using yeast, aqueous solutions of ethanol are produced. The conditions needed for this process include a moderate temperature $\left(25-50^{\circ} \mathrm{C}\right)$, water (from sugar solution) and an absence of oxygen.

Alcohols react with sodium, air and water.

> Ethanol is produced from fermentation.
and an absence of oxygen.

-	Deoxyribonucleic acid is a large molecule essential for life. DNA gives the genetic instructions to ensure development and functioning of living organisms and viruses.
	Most DNA molecules are two polymer chains made from four different monomers, called nucleotides. They are in the double helix formation.
	Other naturally occurring polymers include proteins, starch and cellulose and are all important for life.
tion polymerisation	
tonomers with two	
groups	When these types of monomers react they join together and usually lose small molecules, such as water. This is why they are called condensation reactions.

Condensation polymerisation involves monomers with two functional groups

When these types of monomers react they join as water. This is why they are called condensation reactions.
(

